3GPP TSG SA WG3 (Security) Meeting #85
S3-161664
7-11 November 2016 Santa Cruz de Tenerife (Spain)
revision of S3-13abcd
Source:
Apple
Title:
Privacy Protection for EAP-AKA and EAP-AKA’
Document for:
Discussion and Approval
Agenda Item:
7.6.1
Work Item / Release:
Rel-14
Abstract of the contribution: This document recommends the use of public key cryptography to provide the confidentiality of the user’s permanent identity in transit. The solution recommends to use RSA-OAEP(SHA-256) encryption scheme with key size of 2048 bits length to protect the permanent identity when the EAP client needs to send it to the server in absence of pseudonym or fast re-authentication identity.
1.
Introduction

The EAP-AKA protocol is used with IKEv2/IPsec tunneling to provide access to an operator’s network. The EAP-AKA protocol makes use of the International Mobile Subscriber Identity (IMSI) as the permanent identity in the authentication exchange. The IMSI is a unique identifier that can be used to track device movement. Protecting the IMSI against untrusted exposure is important to protect user privacy.

EAP-AKA supports privacy protection through the use of the pseudonym identity and fast re-authentication identity. Although the above mitigations increase privacy protection, there are scenarios in which the EAP client is obligated to reveal the IMSI in the clear. The purpose of this document is to present potential protocol enhancements to protect the IMSI in these scenarios.

2.
Background

EAP-AKA protocol provides a way to hide the identity (RFC 4187 Section 12.1) using a “pseudonym” on all but the first authentication exchange. The server generates a pseudonym for the client, associates it with the IMSI, and securely transmits the “next pseudonym” for the client to use on its next authentication attempt. The client remembers the pseudonym, and from that point forward, the client continues to use the pseudonym and not the IMSI.

As a result, any device that passively sniffs wireless traffic after the first exchange does not see the IMSI. Unfortunately, that is not the case with an active attacker.

In order to provide mitigation against active attack, the option of enabling conservative peer mode was introduced. The conservative peer is described in section 4.1.6 of RFC 4187. A conservative EAP peer enforces a configurable lifetime of the pseudonym which means it does not present the IMSI in response to server’s request for permanent ID until the pseudonym lifetimes expires.

3.
Problem Statement

The EAP client sends the permanent identity in the clear in following circumstances:
1. When the EAP client does not have the pseudonym or fast re-authentication identity.

2. When the EAP authentication server does not recognize the pseudonym presented by the EAP client and requests the permanent identity.

Because the permanent identity never changes, revealing it would help to gather information on the identity and location of the user. It is important to provide an identity privacy support mechanism that ensures the EAP exchange never reveals the IMSI to passive or active attackers.

4.
Proposed Solution

This document proposes a solution that eliminates the need for the EAP client to send the permanent identity in the clear. The client must use the pseudonym or fast re-authentication identity when available, and must provide confidentiality of the permanent identity in all other circumstances when it is required by the server.

4.1
Encrypting the Identity

This solution proposes the use of public key cryptography to achieve the confidentiality of the permanent identity. The EAP client is configured with the public key of the authentication server so that it can encrypt the permanent identity before sending it to the server. The authentication server is configured with the corresponding private key. When server receives the encrypted permanent identity, it is able to decrypt it using the private key.

If the deployment consists of multiple authentication servers, the proposal assumes that each of the nodes share the same key pair. In addition, the device may provide the key identifier to help authentication server locate the private key to decrypt the permanent identity. For example, the EAP client can be provided certificate serial number of the server certificate as a key identifier to send to the authentication server.

Encrypting the permanent identity is employed at the EAP method layer. That implies that authentication server has to rely on client identity determination supported at EAP-AKA layer. The authentication server uses an EAP-Request/AKA-Identity message to get the client’s identity. The EAP-Response/Identity will only reveal the NAI realm to enable routing the packet to the correct authentication server.

To distinguish between encrypted and unencrypted permanent identity the below encoding format is implemented on both ends:

[image: image1.png]UE ePDG 3GPP AAA Server

IKE_SA_INIT

IKE_SA_INIT

EAP Response/ldentity <anonymous>@NAI Realm

EAP-Request/AKA-Identity AT_ANY_ID_REQ)

EAP-Response/AKA-Identity
(AT_IDENTITY="9"|<encrypted IMSI>@NAI Realm)

EAP-Request/AKA-Challenge
(AT_RAND, AT_AUTN, AT_MAC)

EAP-Response/AKA-Identity
(AT_RES, AT_MAC)

EAP-Success

vpn connection established

First ASCII character:

· “\0”(ASCII NUL character) => encrypted IMSI

· “0”(ASCII value 30 hexadecimal) => EAP-AKA IMSI
· “6”(ASCII value 36 hexadecimal) => EAP-AKA’ IMSI

Encrypted Permanent Identity: This field follows the first character only when the first character is “\0”. This data represents base64 encoded encrypted permanent identity. With RSA key size of 2048 bits and RFC 4648 compliant Base64 encoding, this data is always 345 ASCII characters.

Key Identifier AVP: Key Identifier AVP (attribute value pair) represents a data that helps the server to locate the private key to decrypt the permanent identity. This field is optional and if it is present then it’s always separated from encrypted permanent identity with “,” (ASCII comma) character. Key identifier AVP is presented in ASCII string with “name=value” format ending with a null character. For example, if the client wants to send certificate serial number to the authentication server then it is formatted as “CertificateSerialNumber=12345”.

When neither a pseudonym nor a fast re-authentication identity is available, the EAP client uses an anonymous username decorated with appropriate NAI realm in the EAP-Response/Identity packet. The format of the anonymous username is anonymous@<NAI-realm>. On receiving EAP-Request/AKA-Identity packet from server, client sends encrypted permanent identity with NUL ASCII character (“\0”) as a prefix character. The EAP client forms a buffer containing the permanent username and encrypts the buffer using the RSA public key of the authentication server. EAP client uses RSA-OAEP encryption scheme to encrypt the permanent identity which guarantees the encrypted username is unique each time it is generated and avoids creating another persistent and trackable identifier for the user.

This solution proposes use of RSA-OAEP encryption scheme with SHA-256 hashing. As described in section 7.1 of RFC 3447, with RSA-OAEP encryption scheme, it is computationally infeasible to obtain full or partial information about a message from a ciphertext, and computationally infeasible to generate a valid ciphertext without knowing the corresponding message. Therefore, a chosen-ciphertext attack is ineffective against a plaintext-aware encryption scheme such as RSAES-OAEP. The RSA key size of 2048 bits and SHA-256 hash function will support encryption of plaintext data of length up to 190 bytes.

The mechanism to configure the public key with EAP client is out of scope of this document.

If it is necessary to explicitly communicate the identifier of the public key that EAP client is using for encryption, the client shall populate the key identifier data along with the encrypted permanent identity. The EAP client is unaware of application of this identifier, and it’s only responsible to transport it to the server in a format the server knows. The EAP client must be configured with name and value of the attribute in printable string format so it can send this data to the authentication server.

The mechanism to configure attribute name and value for key identifier AVP is out of scope this document.

With RSA key size of 2048 bits, the encryption buffer is 256 bytes. Since EAP-AKA does not support fragmentation, use of the 2048-bit key size is necessary to keep the size of the packet limited so that the maximum transfer unit (MTU) of the underlying lower layer is not exceeded. The client then converts the buffer to printable characters using Base64 encoding of the encrypted bytes. The Base64 encoding is done in compliance section 4 of RFC 4648. The Base64 encoding on the encrypted data provides string of 345 ASCII characters.

4.2
Decrypting the Identity

An authentication server may receive a pseudonym identity, fast re-authentication identity, a permanent identity in cleartext or an encrypted permanent identity in the AT_IDENTITY attribute of an EAP-Response/AKA-Identity packet. If the server supports the pseudonym or fast re-authentication identity, it looks up the received username in its pseudonym/fast re-authentication table. If a match is found, it can proceed with authentication using that identity. If no match is found, it needs to differentiate between encrypted and unencrypted username.

To differentiate between encrypted and unencrypted IMSI, the server uses a mechanism that is based on section 4.1.1.6 of RFC 4187. The permanent username MUST be of the format <"0" | IMSI> for EAP-AKA, where the character "|" denotes concatenation. So if the server finds the first character to be “0”, it knows the IMSI is in plaintext and it can proceed with reading the remaining digits of IMSI and continue with the authentication. But if the first character is “\0”, then the server knows that the client has sent the encrypted data.

The server first reads string of 345 ASCII characters following the “\0” ASCII character. This string of 345 ASCII characters is a Base64 encoded encrypted permanent identity. First, the server performs the Base64 decoding to get encrypted data. If there is “,” character found following the encrypted permanent identity data, server shall read the key identifier value using encoding format describe above, and using the key identifier it shall locate the private key. The server runs RSA decryption using the appropriate private key on the data to get the plaintext data which represents a 16-character ASCII string. The format of the IMSI follows the same formatting rules as specified in section 4.1.1.6 of RFC 4187.

The following signaling flow shows the above procedures:

If the server fails to decrypt the IMSI, the server shall send an EAP-Request/AKA-Notification message with AT_NOTIFICATION code "General failure" (16384) to terminate the EAP exchange. This is necessary to indicate to the EAP client that the server was unable to decrypt the IMSI, so the EAP client can take the right measure to update the public key.
345 ASCII characters

“\0”

Base64{RSA Public Key Encryption{<permanent ID>} }

Encrypted Permanent Identity

“name=<value>”

Key Identifier AVP

“,”

